ទំរង់ស្តង់ដា
1.
2.
3.
(អាំងតេក្រាលដោយផ្នែក)
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
ទំរង់ជាប់ au+b
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
ទំរង់ជាប់ au+b
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
ទំរង់ជាប់
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
ទំរង់ជាប់
38.
39.
40.
41.
42.
43.
រូបមន្តជាប់
39.
40.
41.
42.
43.
រូបមន្តជាប់
44.
45.
46.
47.
48.
49.
50.
51.
រូបមន្តជាប់ 
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
រូបមន្តជាប់ 
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
រូបមន្តជាប់
62.
63.
64.
65.
66.
រូបមន្តជាប់
67.
68.
69.
70.
71.
72.
73.
74.
75.
រូបមន្តជាប់
68.
69.
70.
71.
72.
73.
74.
75.
រូបមន្តជាប់
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
រូបមន្តជាប់
77.
78.
79.
80.
81.
82.
83.
84.
85.
រូបមន្តជាប់
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
អាំងតេក្រាលជាប់អនុគមន៍ត្រីកោណមាត្រ
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.![\int \displaystyle \frac{du}{p+qcosau}= \begin{Bmatrix} \displaystyle \frac{2}{a \sqrt{p^{2}-q^{2}}}arctg[ \sqrt{(p-q)/(p+q)}tan \frac{1}{2}au]+c,|p|>|q| \\ \displaystyle \frac{1}{a \sqrt{q^{2}-p^{2}}}ln[ \frac{tan \frac{1}{2}au+ \sqrt{(q+p)/(q-p)}}{tan \frac{1}{2}au- \sqrt{(q+p)/q-p)}}]+c,|p|<|q| \end{Bmatrix} \int \displaystyle \frac{du}{p+qcosau}= \begin{Bmatrix} \displaystyle \frac{2}{a \sqrt{p^{2}-q^{2}}}arctg[ \sqrt{(p-q)/(p+q)}tan \frac{1}{2}au]+c,|p|>|q| \\ \displaystyle \frac{1}{a \sqrt{q^{2}-p^{2}}}ln[ \frac{tan \frac{1}{2}au+ \sqrt{(q+p)/(q-p)}}{tan \frac{1}{2}au- \sqrt{(q+p)/q-p)}}]+c,|p|<|q| \end{Bmatrix}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_ucjLWWeFnkPP_sqC3lP3wGL2VSwsbdjqEKSPLvX-pMJgqJ68u8mDpPMyr2-el-WEpqavI3Cdhlk4QuBhMSYfoEYMmjEMJptD_1u0u5iwNVuq5FVeuOOFtOLrjijzF3vHRtLQRrHDsIR9YVKYfhbUqIFmfuDlBumkcrWqLsUt2qon5_dJd3sB5E4fmfjWkJRfJmHRroy5CvjtIfwE-6JiSDgOtVzYJReRB_PyqZ8yY648YIBh1ewIMW8YNmEmEIcK61b6GnvR9ZW3K2tbtQDi0vS6dq2sfQKRGpVYOMXCWqa27bgAmPpt6l7L6hfAwK9z9PN5yf-2q8eCFZ9ohY8mHztLwMjORoYX2ZYlPWnDjBIzA8gU6He_m9SQi5q0n1EHeTHfmBDY8diMmjmHvywt5TFPd13oE3MIG40vKqVgZqcjyCKCDVod_3GH_FqipjSJk3incvg9HvKGXsS8Wj7QHBGO8OZ4Qye3gfvdv3OXwgXjQQIEhDc2N_udpppeu839LEaM4vJx4H_Ke6TZ3IbKcBc4hJ5Bt67H_9KHe6mtWBM59qmqedhIDjgm0qhf4y6nXd6PMqJ-pDHdA0F-HAKEV-ZHxNvPwLi_6skaXbEEyIk-8pEb-RcDT1x_WQnSg8DRvnvgU1tZ5arTuj3zl6rSuQF5kXQejcGqwtFzF9xXuA3AJDCvksXtFG_j5cgjw77e9JOar51KKYiQyqlGcJC-TRePViQiW4i-Px6PQwZrYPuHGenJzd7i4ljq6CcXuu932xy-d5DMokNTiF9YgHhL5rdYlwklI=s0-d)
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.![\int \displaystyle \frac{cosaudu}{sinau \pm cosau}= \pm [ \frac{u}{2}+ \frac{1}{2a}ln|sinau \pm cosau|]+c \int \displaystyle \frac{cosaudu}{sinau \pm cosau}= \pm [ \frac{u}{2}+ \frac{1}{2a}ln|sinau \pm cosau|]+c](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_t349co5yGjrlaqIbdEsjPPXVaZUVdbVmfHnQjSK38XQcI9ziq4SDQoFhpc21Tg-iq2AcQryAVMoCXft4VEPgcz4m-jfy7uz6RNiFUENjYb73DhmqZk6n0YSsM0DVsoHYkUgPZpea7GLv4MicuVjNMK3pIQ4svPH6XTBr8Chqjvw1H1TnplsuPnWK1GZSBN8ZHISddAW2M-XZTkOlg5zZrGwEoPgUu8skYUuKHy591DHQAz3H63cJI-MN-NeTIbrQqa71pHyt82hbNqFtW9zIJJ1So8F2YXd_aKb1bUcl7njEysJTu03OAlcLVqIv9MV4M2nVnd4Xi0XUjwWR0=s0-d)
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
អាំងតេក្រាលជាប់អនុគមន៍ច្រាសត្រីកោណមាត្រ
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
អាំងតេក្រាលជាប់អនុគមន៍ច្រាសត្រីកោណមាត្រ
154.
155.
156.
157.
158.
159.
160.
161.
162.
អាំងតេក្រាលជាប់
155.
156.
157.
158.
159.
160.
161.
162.
អាំងតេក្រាលជាប់
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
អាំងតេក្រាលជាប់ lnu
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
អាំងតេក្រាលជាប់អនុគមន៍អីប៉ែបូល
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
អាំងតេក្រាលកំនត់មួយចំនួន
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.